

Low Volume Automation, Challenges and Advantages

Presented during the 63nd ICI Technical Conference October, 2016

Presented by: Aaron Phipps MPI, Inc.

Introduction

• 3rd paper in a series focusing on the wax room

 This Presentation focuses on Automated Assembly

Flash Back

Part Injection Optimization (Data taken from Paper #2)

Parts/Hour

Automated Assembly The Customers Challenge

- No major die modifications were allowed
- No major runner modifications were acceptable
- Short set up time on new jobs
- Seamless job changeover is a must
- No set up for repeat work

Production Challenges

- There is no such thing as a standard runner in a foundry.
 Even small changes provide big challenges
- Runners are second class patterns
- Patterns are often not similar or have no commonality
- Pattern gates and runners are mismatched
- Pattern Dies are not built to produce defect free parts
- Non standard die design
- injection runners and gating runners tend to be vary from tool to tool
- Rather, they are ideas an engineer tried one time before coming up with a new unique solution
- Injection feeds are secondary to pattern shape having dramatic impacts on fill and quality.

Challenge Accepted

Mismatched families of parts to be assembled

The Plan of Attack To Assemble

- Develop a new generation of tooling
 - Runner holders
 - Grippers
 - Hot Knives
- Collect Data on manual assemblies
- Create automated assemblies
- Conduct casting trials

Automated Vs. Manual Assembly

- Original Manual assembly 7 parts / row
- Automated assembly 8 and 9 parts / row
- Total increase of 12 parts / pour

22% Increase

• Assembly time decrease from 14min to 7min

50% Time Savings

Pour Ratio Gains

Parts per Runner Bar

% of Patterns

% Pour

Reduced Shell Material

Lessons Learned

- Reduced shell material- the more parts you can put on an assembly the fewer assemblies you will need to dip
- Reduced part spacing and bridging.
- Uniform part coverage due to presentation of the part to the slurry
- Increased accuracy of solidification models
- More accurate part cut resulting in reduced gate grind
- Reduced cut off scrap
- Reduced scrap due to inclusions

Take Away

• Automation reduces variability. Reduce in the Beginning reduce throughout

 These process gains allow your engineers to focus on corrective actions that focus on problems at the root of their origin

Solve the problem one time!

Questions

