
ICI 59<sup>th</sup> Technical Conference & Expo Nashville, TN 7<sup>th</sup> – 10<sup>th</sup> October 2012

> Bruce Phipps President MPI Incorporated

#### Where we came from



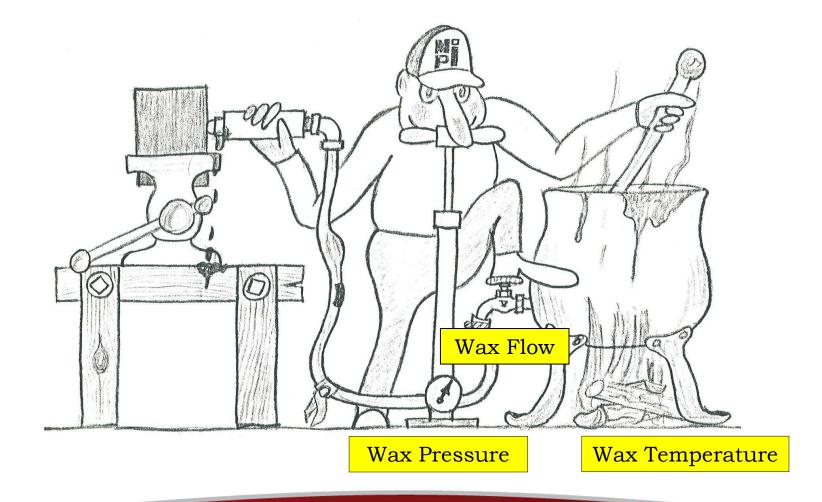
- Trip down Memory Lane
- 40 years ago controls were minimal

PASTE "CYLINDER" WAX INJECTOR

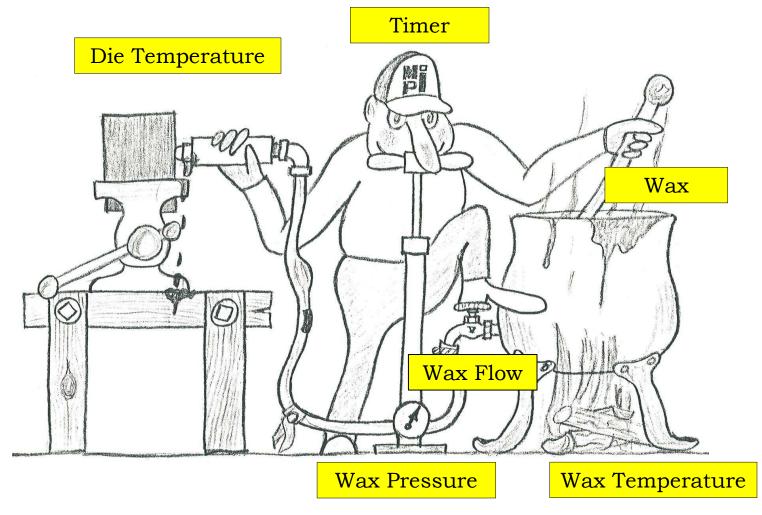
## Where are we going

- Today with Digital Controls we can have the opportunity to see what is happening with:
  - Wax Temperature
  - Wax Flow
  - Wax Pressure
- Hold tighter tolerances

### Some things never change


"No matter how sophisticated the instrumentation, the application of that instrumentation and how it is used to control the process is the real challenge."

### **Key Input Variables**


Key Input Variables:

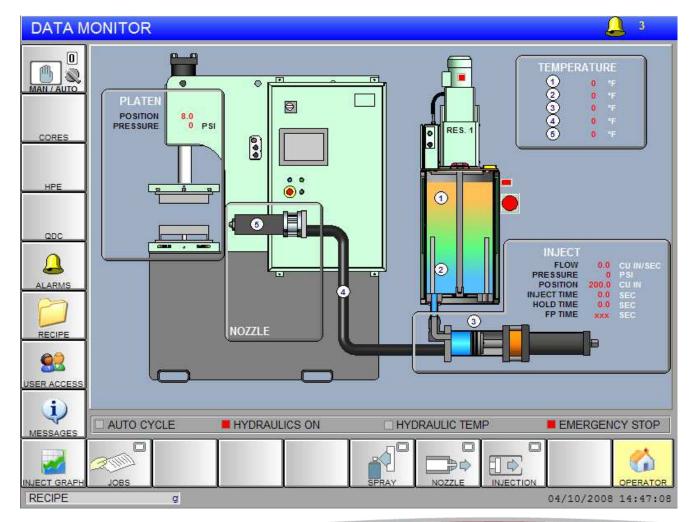
- Temperature
- Flow
- Pressure
- Time
- Wax

#### **Key Input Variables**



#### **Key Input Variables**

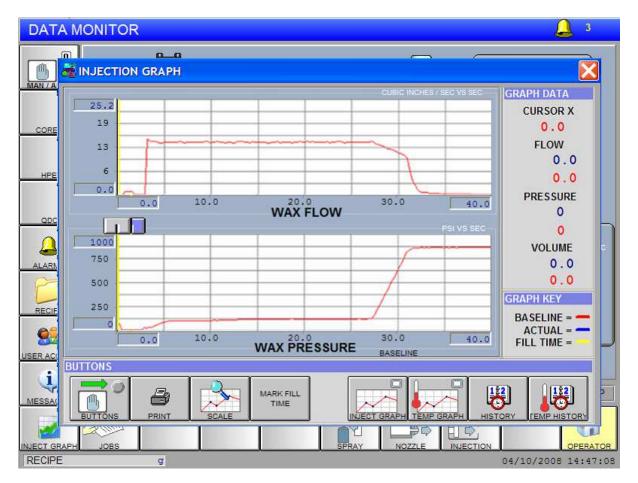



Digital Technology allows us to accurately control wax:

- Temperature
- Flow
- Pressure
- Time
- Wax

## **The Process of Wax Injection**

- The goal of wax injection is to replace 100% of the air in the die with wax
- If you achieve this goal you will get a perfect wax pattern
- To be successful you need control


#### **The Process of Wax Injection**



Digital technology provides the control

• Wax Temperature Control

- Wax Temperature Control
- Wax Flow and Pressure Control



- Wax Temperature Control
- Wax Flow and Pressure Control
- Die Temperature Control

- Wax Temperature Control
- Wax Flow and Pressure Control
- Die Temperature Control
- Injection Time

Digital Technology allows for:

• Store recipes

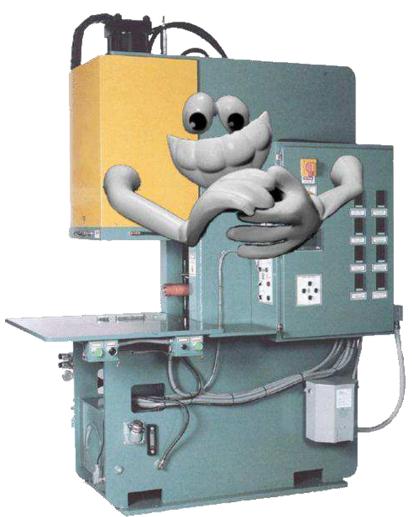
- Store recipes
- Control and analysis of Key Input Variables

- Store recipes
- Control and analysis of Key Input Variables
- Repeatable setups

- Store recipes
- Control and analysis of Key Input Variables
- Repeatable setups
- Control who can make process changes

- Store recipes
- Control and analysis of Key Input Variables
- Repeatable setups
- Control who can make process changes
- Vary the flow and pressure during an injection cycle

## Why Not Perfect Patterns?


The controls have the ability to give you a perfect pattern each time.

- Why aren't foundries producing perfect patterns all the time?
- Why do we still have pattern defects?

### **Why Not Perfect Patterns?**

No matter how sophisticated the instrumentation is, the application of that instrumentation and how it is used to control the process is the real challenge.

#### **Why Not Perfect Patterns?**



How do you know that your machine is doing what it is supposed to do?



How do you compare one manufacturer's machine to another?

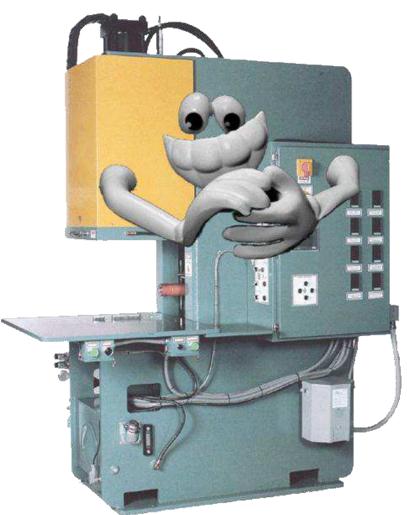


Pressure readout at the nozzle



#### MPI's 20-20 Process Vision

#### Through the use of digital data collection devices






Data collection Device

Wax temperature sensing Wax pressure sensing

Wax Flow sensing



Eliminate your machines personality

Achieve repeatability for all your machines

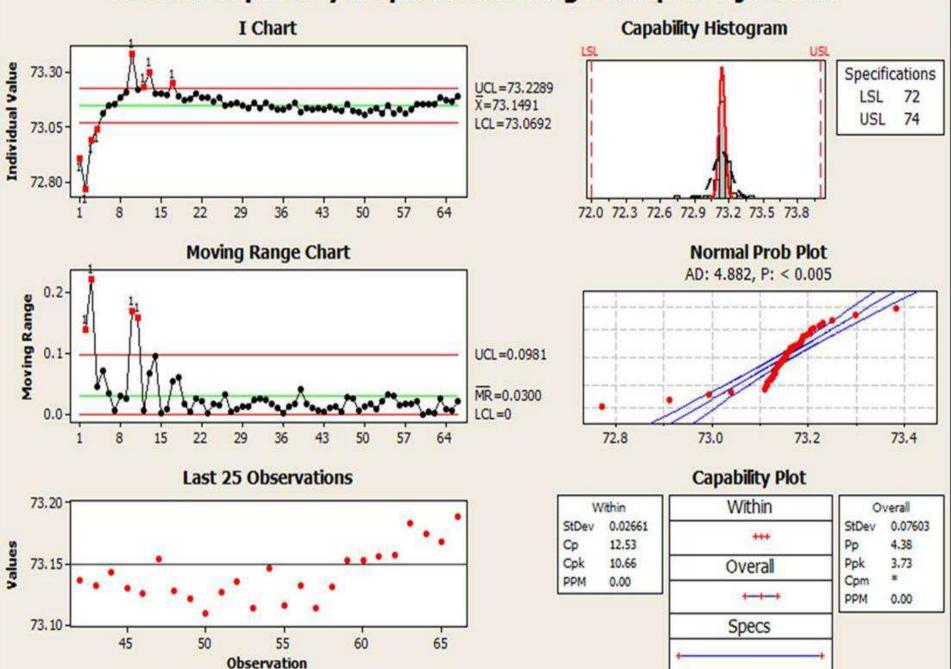
#### Example #1

A large foundry benefited from the use of a data collection device

- Collected Data from all machines
- Saw variations between machines
- Saw variations within the machines

#### Example #1

Compared data with a newer Digitally controlled machine




#### Example #1

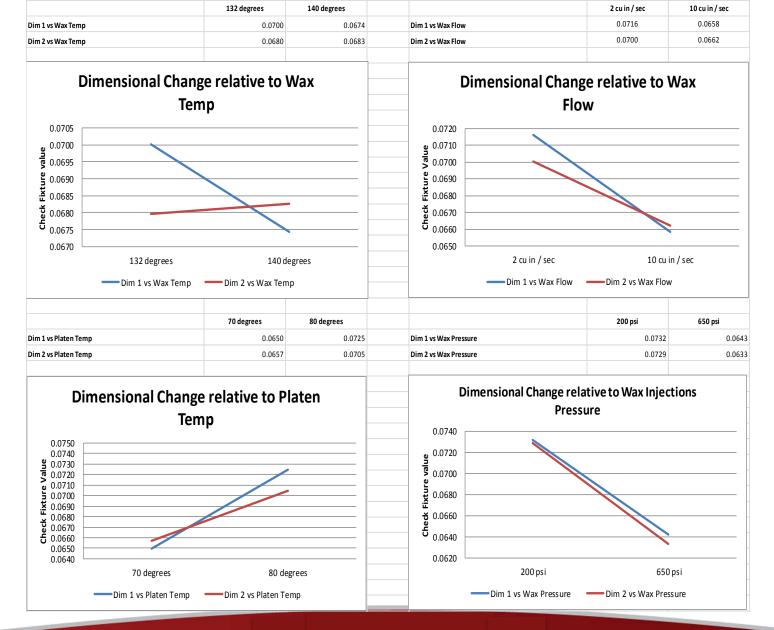
In the above example, one of the data points being collected was the wax temperature.

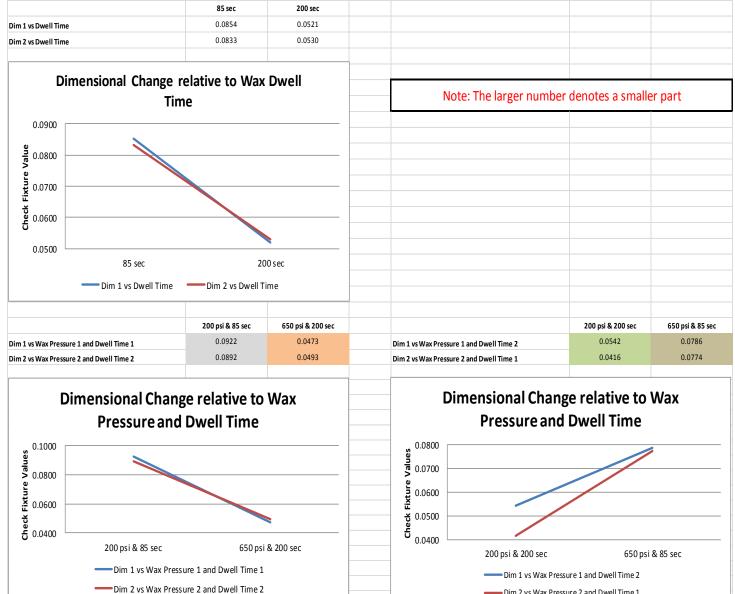
- Used data collected to analyze, through Statistical Process Control, wax temperature variation at the nozzle
- Data was gathered every 0.1 second
- See illustration 2

#### Process Capability Sixpack of Average Temp of injections



#### Example #2


- It is difficult to predict the outcome of an injection recipe
- Start with a similar recipe of a know part
- What happens if your part has dimensional variation from specification?


#### Example #2

Using Data to drive your injection recipe

- Create a 2k full factorial Design of Experiment (DOE)
- One of our customers conducted such and experiment

|                   |                       |             |                 |             |               | Dim 1  |        | Dim 2  |        |
|-------------------|-----------------------|-------------|-----------------|-------------|---------------|--------|--------|--------|--------|
|                   |                       |             |                 |             | 1. Dwell Time | 0.1017 | 0.0941 | 0.0791 | 0.0856 |
|                   |                       |             |                 | 1. Wax Flow |               |        |        |        |        |
|                   |                       |             |                 |             | 2. Dwell Time | 0.0508 | 0.0598 | 0.0570 | 0.0531 |
|                   |                       |             | 1. Wax Pressure |             |               |        |        |        |        |
|                   |                       |             |                 |             | 1. Dwell Time | 0.0921 | 0.0720 | 0.0920 | 0.0817 |
|                   |                       |             |                 | 2. Wax Flow |               |        |        |        |        |
|                   |                       |             |                 |             | 2. Dwell Time | 0.0435 | 0.0489 | 0.0641 | 0.0650 |
|                   |                       | 1. Wax Temp |                 |             |               |        |        |        |        |
|                   |                       |             |                 |             | 1. Dwell Time | 0.0804 | 0.0865 | 0.0764 | 0.0858 |
|                   |                       |             |                 | 1. Wax Flow |               |        |        |        |        |
|                   |                       |             |                 |             | 2. Dwell Time | 0.0656 | 0.0459 | 0.0525 | 0.0485 |
|                   |                       |             | 2. Wax Pressure |             |               |        |        |        |        |
|                   |                       |             |                 |             | 1. Dwell Time | 0.0708 | 0.0788 | 0.0835 | 0.0655 |
|                   |                       |             |                 | 2. Wax Flow |               |        |        |        |        |
|                   |                       |             |                 |             | 2. Dwell Time | 0.0425 | 0.0412 | 0.0400 | 0.0431 |
|                   | 1. Platen Temperature |             |                 |             |               |        |        |        |        |
|                   |                       |             |                 |             | 1. Dwell Time | 0.0914 | 0.0709 | 0.0884 | 0.0877 |
|                   |                       |             |                 | 1. Wax Flow |               |        |        |        |        |
|                   |                       |             |                 |             | 2. Dwell Time | 0.0470 | 0.0510 | 0.0609 | 0.0535 |
|                   |                       |             | 1. Wax Pressure |             |               |        |        |        |        |
|                   |                       |             |                 |             | 1. Dwell Time | 0.0873 | 0.0863 | 0.0900 | 0.0803 |
|                   |                       |             |                 | 2. Wax Flow |               | 0.0070 | 0.0000 | 0.0000 | 0.0000 |
|                   |                       |             |                 |             | 2. Dwell Time | 0.0470 | 0.0521 | 0.0512 | 0.0510 |
|                   |                       | 2. Wax Temp |                 |             |               | 0.0170 | 0.0021 | 0.0012 | 0.0010 |
|                   |                       |             |                 |             | 1. Dwell Time | 0.0820 | 0.0805 | 0.0751 | 0.0707 |
|                   |                       |             |                 | 1. Wax Flow |               | 0.0020 | 0.0005 | 0.0701 | 0.0707 |
|                   |                       |             |                 |             | 2. Dwell Time | 0.0402 | 0.0480 | 0.0559 | 0.0488 |
|                   |                       |             | 2. Wax Pressure |             |               | 0.0402 | 0.0400 | 0.0555 | 0.0400 |
|                   |                       |             |                 |             | 1. Dwell Time | 0.0489 | 0.0790 | 0.0500 | 0.0805 |
|                   |                       |             |                 | 2. Wax Flow |               | 0.0-09 | 0.0750 | 0.0500 | 0.0005 |
|                   |                       |             |                 | 2. WUATTOW  | 2. Dwell Time | 0.0511 | 0.0425 | 0.0410 | 0.0457 |
| Wax Parameter DOE | l                     |             |                 |             | 2. Dweir mile | 0.0511 | 0.0423 | 0.0410 | 0.0457 |
| wax Parameter DUE |                       |             |                 |             |               |        |        |        |        |





Dim 2 vs Wax Pressure 2 and Dwell Time 1

Having your personnel adapt to the new digital technology of the wax room is key to success.

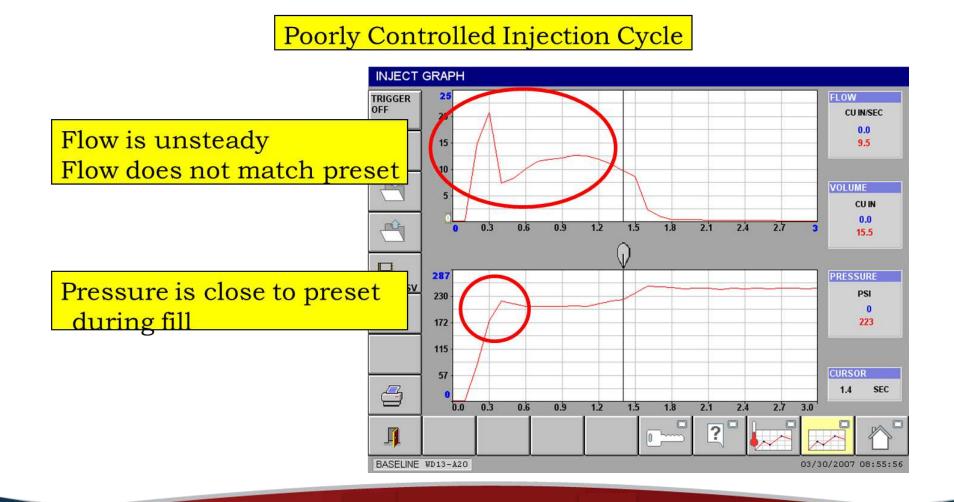
- Need to be trained on it's operation
- Understand the differences between old and new
- The operator may be reluctant to change

It is not uncommon to find a new digitally controlled machine setup incorrectly:

**Example #1:** Temperature variations in the machine due to improper setup, especially in the injection nozzle

It is not uncommon to find a new digitally controlled machine setup incorrectly:

**Example #1:** Temperature variations in the machine due to improper setup


**Example #2:** Machine designed to run paste wax but is used as a liquid machine

It is not uncommon to find a new digitally controlled machine setup incorrectly:

**Example #1:** Temperature variations in the machine due to improper setup

**Example #2:** Machine designed to run paste wax but is used as a liquid machine

**Example #3:** Wax flow control being controlled with wax pressure and not understanding why



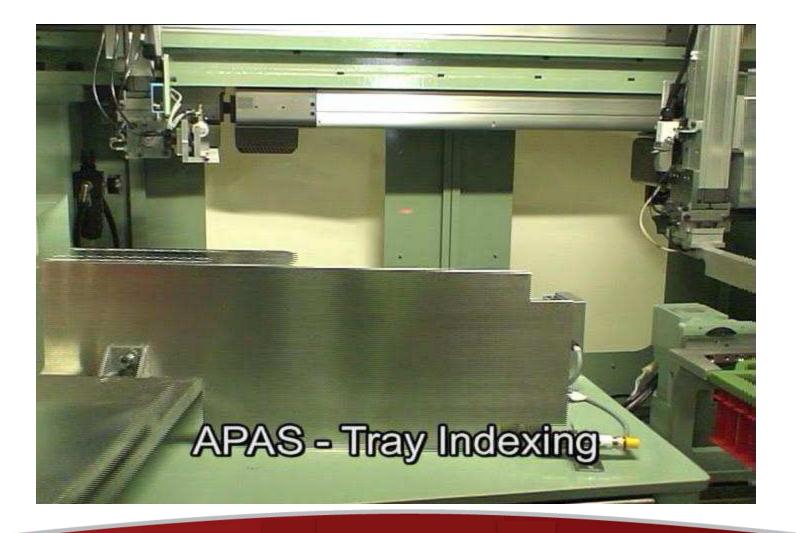
#### **Robotic Integration in the wax room:**

Robots have become a reality in the wax room

#### **Robotic Integration in the wax room:**

Robots have become a reality in the wax room

• Automated wax injection cell using a 6 axis robot


### **Automated Injection: 6 Axis Robot**



#### **Robotic Integration in the wax room:**

Robots have become a reality in the wax room

- Automated wax injection cell using a 6 axis robot
- Automated pattern assembly, multiple patterns per runner bar

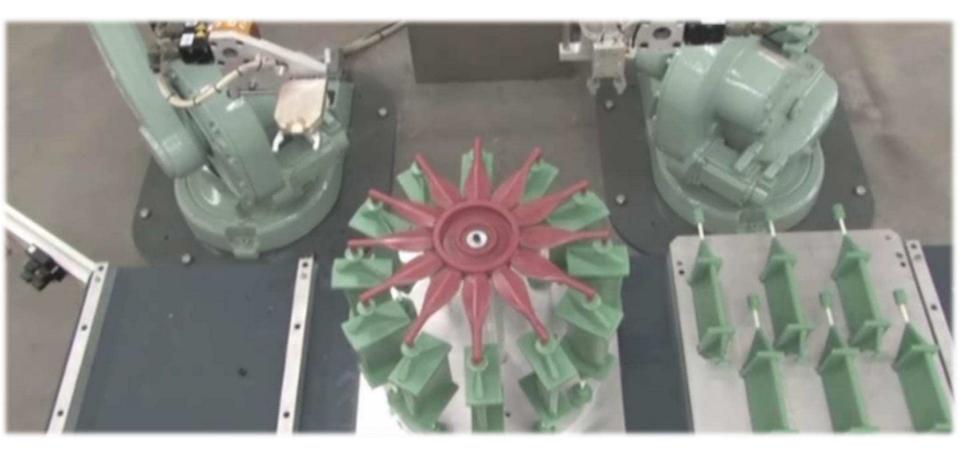


#### **Robotic Integration in the wax room:**

Robots have become a reality in the wax room

- Automated wax injection cell using a 6 axis robot
- Automated pattern assembly, multiple patterns per runner bar
- Automated pattern assembly using two 6 axis robots for single crystal assemblies

### **Automated Assembly: Two 6 Axis Robots**




Single Crystal Turbine Blade Assembly

## **Automated Assembly: Two 6 Axis Robots**



### **Automated Assembly: Two 6 Axis Robots**



## **Digital Technology in the Wax Room**

- Digital technology is awesome
- Yes it can be frustrating
- Gains out way the setbacks
- Robotic integration in the wax room

## **Digital Technology in the Wax Room**

Embracing digital technology through proper education will achieve long term gains in:

- Productivity
- Accuracy
- Casting Yields
- Bottom Line

### **Digital Technology in the Wax Room**

# **Thank You**